Faculty of Electronics and Telecommunications

STUDY MODULE D	ESCRIPTION FORM		
		Code 1010831171010833981	
Field of study Electronics and Telecommunications	Profile of study (general academic, practical) general academic	Year /Semester 4 / 7	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
Telecommunication Systems	Polish, English	elective	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	full-time		
No. of hours		No. of credits	
Lecture: 1 Classes: 1 Laboratory: 1	Project/seminars:	- 2	
Status of the course in the study program (Basic, major, other)	(university-wide, from another fi	eld)	
major from field			
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences	2 100%		
Technical sciences		2 100%	
Responsible for subject / lecturer:			
dr inż. Jan Lamperski email: jlamper@et.put.poznan.pl tel. +48 61 665 3809 Faculty of Electronics and Telecommunications			
i acuity of Liectionics and refecontinuitications			

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of mathematics, EM field theory, optics and optocommunications.
2	Skills	Skills in the field of electronic metrology.
3	Social competencies	Ability to work in a group.

Assumptions and objectives of the course:

ul. Piotrowo 3A 60-965 Poznań

In-depth knowledge and understanding of the design, operation and features of various optical devices used in optical transmission systems and equipment for the processing of optical signals.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. The student has knowledge of the physical behavior of passive and active optical components [-K1_W02]
- 2. Has knowledge of the features and possible applications of optical and optoelectronic materials [-K1_W02, K1_W08]
- 3. Understands physical principles of operation and construction of the selected optical elements and optoelectronic devices (directional couplers, modulators, photodiodes, lasers, optical amplifiers, optical filters, acousto-optical cell. [- K1 W21 K1 W08]
- 4. Understands the applications in which advanced photonics devices and sub-modules are used [-K1-W24, K1_W21]

Skills:

- 1. Can define requirements and select appropriate optical elements for the specific application. [-K1_U12]
- 2. Can calculate the basic parameters of optoelectronic components [-K1_U08, K1_U20]
- 3. Has design skills to define problems, identifies constrains propose solutions for specific applications to fulfill performance and required specification [-K1_U20]
- 4. Able to measure basic properties of optoelectronic components [-K1_U17]

Social competencies:

- 1. Has awareness of the necessity of professional approach to solving of technical problems. [-K1_K01]
- 2. Understands the role of photonics in next-generation systems for signal processing and transmission [-K1_K04]
- 3. Is aware of the advantages of optical technology and necessity of transition from electronics to photonics. [-K1_K04]

Faculty of Electronics and Telecommunications

Assessment methods of study outcomes

Final test, colloquium, lab reports.

Course description

Duality of light: rays, waves, electromagnetism, quanta. Polarization of light. Electro- and acousto-optic effects. Nonlinear optics. Fundamentals of quantum mechanics.

Selected components of integrated optics: planar waveguides, directional couplers, EAM (Franz-Keldysh), MZM, AOM.

Photonic crystal fibers. PCF supercontinuum.

Fabry-Perot resonator.

Optoelectronic semiconductor materials: electrical carriers, energy band-gap structure, direct indirect semiconductors.

Interaction of radiation with atoms.

Basic principles of light detection and emission in semiconductors. LED electrical and optical features. Semiconductor optical amplifiers. Properties of F-P, DFB, DBR semiconductor lasers. Mode locked lasers.

Modulators for advanced modulation formats: PSK, QPSK, DQPSK, PolSK. Coherent detection. Detection of multileve optical signals. SOA: Wavelength conversion and regeneration. Nonlinear based all optical signal processing and regeneration (NOM, SL, SPM-MZI). Optical switching: MEMS, OE, LC, CI technology. Optical control loops: OIL, OPLL. Optical computers.

Optical comb generation. Optical frequency standards.

Basic bibliography:

- 1. Optoelektronika, B. Ziętek, UMK, Toruń, 2004
- 2. Optyczne przetwarzanie informacji, K. Gniadek, PWN, Warszawa, 1992
- 3. Optical Electronics in Modern Communications, A. Yariv, Oxford University Press, N. York, 1998
- 4. Pomiary w optycznych systemach telekomunikacyjnych, K. Perlicki, WKŁ, 2002
- 5. http://www.rp-photonics.com/encyclopedia.html

Additional bibliography:

- 1. Wstęp do optyki, J.R. Meyer-Arendt, PWN, Warszawa, 1979
- 2. http://www.invocom.et.put.poznan.pl/~invocom/C/P1-9/swiatlowody_en/index.htm

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures	15
2. Participation in classes	15
3. Participation in labs	15
4. Selfstudy	13
5. Final test	2

Student's workload

Source of workload	hours	ECTS
Total workload	50	2
Contact hours	35	1
Practical activities	30	1